A-Level Chemistry Calculation Booklet

Name

Contents

Section 1: Molar Mass 2
Section 2: Chemical Formulae 4
Symbols and charges of common elements and ions 6
The number of covalent bonds normally formed by an element 7
Section 3: Naming of Compounds 13
Section 4: The Mole 19
Example calculations using moles 19
Section 5: calculations involving chemicals in solution 31
Section 6: Chemical Equations 35
Equations in words. 35
Writing formulae 35
Balancing the equation 35
You must complete this booklet and bring it with you to your first class in September

Section 1: Molar Mass

Exercise 1: calculation of the molar mass of compounds

Calculate the molar mass of the following compounds. You will find data concerning relative atomic masses on the periodic table of elements. When you have finished this set of calculations keep the answers for reference. You will find them useful for some of the other questions in this workbook.
$1 \quad \mathrm{H}_{2} \mathrm{O}$
$2 \mathrm{CO}_{2}$
$3 \quad \mathrm{NH}_{3}$
$4 \quad \mathrm{H}_{2} \mathrm{SO}_{4}$
$5 \quad \mathrm{HNO}_{3}$
$6 \quad \mathrm{NaNO}_{3}$
$7 \quad \mathrm{Na}_{2} \mathrm{CO}_{3}$
$8 \quad \mathrm{NaOH}$
$9 \quad \mathrm{Na}_{2} \mathrm{SO}_{4}$
$10 \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$
$11 \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
$12 \mathrm{FeSO}_{4}$
$13 \quad \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$

14 PbO

$15 \quad \mathrm{PbO}_{2}$

$16 \quad \mathrm{~Pb}_{3} \mathrm{O}_{4}$
$17 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}$
$18 \mathrm{PbCl}_{2}$
$19 \mathrm{PbSO}_{4}$

20 CuCl
$21 \mathrm{CuCl}_{2}$
$22 \mathrm{CuSO}_{4}$
$23 \quad \mathrm{ZnCl}_{2}$
$24 \mathrm{AgNO}_{3}$
$25 \quad \mathrm{NH}_{4} \mathrm{Cl}$
$26 \quad\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
$27 \mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$

Section 2: Chemical Formulae

A chemical formula is a useful shorthand method for describing the atoms in a chemical. Sometimes you will see the formula used instead of the name, but you should not do this if you are asked for a name. The chemical formula of an element or compound tells you:

- which elements it contains eg FeSO_{4} contains iron, sulfur and oxygen
- how many atoms of each kind are in each molecule eg $\mathrm{H}_{2} \mathrm{SO}_{4}$ contains two atoms of hydrogen, one atom of sulfur and four atoms of oxygen in each molecule
- how the atoms are arranged eg $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ contains a group of atoms known as the ethyl group $-\mathrm{C}_{2} \mathrm{H}_{5}$, and a hydroxyl group -OH
- the masses of the various elements in a compound eg 18 g of water $\mathrm{H}_{2} \mathrm{O}$ contains 2 g of hydrogen atoms and 16 g of oxygen since the relative atomic mass of hydrogen is 1 ($\times 2$ because there two hydrogen atoms) and that of oxygen is 16
You should not learn a large number of chemical formulae by heart. However, it is useful to know a few of them and then be able to work out the rest.

You can work out the formulae of compounds containing metals from the charges on the ions:

- metals in group 1 always have charge +1 in their compounds
- metals in group 2 always have charge +2 in their compounds
- metals in group 3 always have charge +3 in their compounds
- lons of group 7 elements have charge -1
- ions of group 6 elements have charge -2
- ions of group 5 elements have charge -3

In the compound, the number of positive and negative charges is equal so that the overall charge is zero.

Some metals form more than one ion, and this is shown by a roman numeral in the name. Iron(II) chloride contains Fe^{2+} ions so the compound is FeCl_{2}. Iron(iii) chloride contains Fe^{3+} ions so the compound is FeCl_{3}.

Some ions have formulae which you cannot deduce from the periodic table, and you will need to learn these:

- OH - hydroxide
- NO_{3-} nitrate
- $\mathrm{CO}_{3}{ }^{2-}$ carbonate
- $\mathrm{SO}_{4}{ }^{2-}$ sulfate
- $\mathrm{NH}_{4}{ }^{+}$ammonium

Compounds which do not contain metals have covalent bonds. The number of bonds a nonmetal can form depends on the number of electrons in its outer shell.

As a rule:

- carbon forms 4 bonds
- nitrogen forms 3 bonds
- phosphorus can form 3 or 5 bonds
- oxygen and sulfur form 2 bonds
- halogens form 1 bond

Here are a few examples:

- Sodium sulfate

The formula of a sodium ion is Na^{+}
The formula of a sulfate ion is $\mathrm{SO}_{4}{ }^{2-}$
There must be two sodium ions, each with charge 1+, to balance the two - charges on sulfate. The formula with two Na^{+}and one $\mathrm{SO}_{4}{ }^{2-}$ is written $\mathrm{Na}_{2} \mathrm{SO}_{4}$

- Calcium hydrogen carbonate The formula of a calcium ion is Ca^{2+}

The formula of a hydrogen carbonate ion is HCO_{3}^{-}
There must be two hydrogen carbonate ions, each with charge 1-, to balance the two + charges on calcium.

The formula with one Ca^{2+} and two $\mathrm{HCO}_{3}{ }^{-}$is written $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$
Note: A bracket must be placed around a group or ion if it is multiplied by 2 or more and/or composed of more than one element. For example:
MgBr 2 no bracket required
$\mathrm{Ca}(\mathrm{OH})_{2}$ bracket essential as CaOH_{2} is incorrect

- Often you can cancel the numbers on the two formulae eg:
$\mathrm{Ca}_{2}\left(\mathrm{CO}_{3}\right)_{2}=\mathrm{CaCO}_{3}$
However, you should not do this for organic compounds. For example $\mathrm{C}_{2} \mathrm{H}_{4}$ has two atoms of carbon and four of hydrogen so it cannot be cancelled down to CH_{2}
- Copper(I) oxide means use copper with charge 1, ie $\mathrm{Cu}_{2} \mathrm{O}$. Lead(II) nitrate means use lead with charge 2 , ie $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$

The periodic table can help you find the charge on an element and the number of bonds it can make, and hence the formula of its compounds.
Although you can use the table to work out the formulae of many compounds it is important to realise that all formulae were originally found through experimentation.

On the next page you will find a table of the more common elements and ions that you may have met at GCSE level. Also included are some that you will meet in the first few weeks of your A-level course or that are mentioned in some of the calculations in this workbook.

Symbols and charges of common elements and ions

Elements	Symbol	Charge on ion	Ions	Symbol	Charge on ion
Aluminium	Al	+3	Ammonium	NH_{4}	+1
Barium	Ba	+2	Carbonate	CO_{3}	-2
Bromine	Br	-1	Hydrogencarbonate	HCO_{3}	-1
Calcium	Ca	+2	Hydrogen-sulfate	HSO_{3}	-1
Chlorine	Cl	-1	Hydroxide	OH	-1
Cobalt	Co	+2	Nitrate	NO_{3}	-1
Copper	Cu	+1 and 2	Nitrite	NO_{2}	-1
Hydrogen	H	+1	Sulfate	SO_{4}	-2
lodine	1	-1	Sulfite	SO_{3}	-2
Iron	Fe	+2 and 3	Chlorate(I)	ClO	-1
Lead	Pb	+2 and 4	Chlorate(V)	ClO_{3}	-1
Magnesium	Mg	+2	Vanadate(V)	VO_{3}	-1
Manganese	Mn	+2 and 4	Manganate(VII)	MnO_{4}	-1
Mercury	Hg	+1 and 2	Chromate(VI)	CrO_{4}	-2
Nitrogen	N	3 and 5	Dichromate(VI)	$\mathrm{Cr}_{2} \mathrm{O}_{7}$	-2
Oxygen	0	-2			
Potassium	K	+1			
Silver	Ag	+1			
Sodium	Na	+1			

The number of covalent bonds normally formed by an element

Element	Number of bonds
Hydrogen	1
Halogens (F, Cl, Br, I)	1
Oxygen	2
Sulfur	2 or more
Nitrogen	3
Phosphorus	3 or 5
Carbon	4
Silicon	4

Exercise 2: writing formulae from names

Use the data in the table Symbols and charges of common elements and ions to write the formulae of the following. Before you start this exercise, make sure you have read Section 3: naming of compounds.

1 Sodium chloride

2 Sodium hydroxide

3 Sodium carbonate

4 Sodium sulfate

5 Sodium phosphate

6 Potassium chloride

7 Potassium bromide

8 Potassium iodide

9 Potassium hydrogen carbonate

10 Potassium nitrite

11 Magnesium chloride

12 Magnesium nitrate

13 Magnesium hydroxide

14 Magnesium oxide

15 Magnesium carbonate

16 Calcium oxide

17 Calcium chloride

18 Calcium sulfate

19 Calcium carbonate

20 Barium chloride

21 Barium sulfate

22 Aluminium chloride

23 Aluminium oxide

24 Aluminium hydroxide

25 Aluminium sulfate

26 Copper(II) sulfate

27 Copper(II) oxide

28 Copper(II) chloride

29 Copper(II) nitrate

30 Copper(I) oxide

31 Copper(I) chloride

32 Zinc nitrate

33 Zinc carbonate

34 Zinc oxide

35 Silver bromide

36 Silver iodide

37 Silver nitrate

38 Silver oxide

39 Lead(II) nitrate

40 Lead(II) carbonate

41 Lead(II) oxide

42 Lead(IV) oxide

43 Lead(II) chloride

44 Lead(IV) chloride

45 Lead(II) sulfide

46 Tin(II) chloride

47 Tin(IV) chloride

48 Iron(II) sulfate

49 Iron(III) chloride

50 Iron(III) hydroxide

51 Ammonium chloride

52 Ammonium carbonate

53 Ammonium hydroxide

54 Ammonium nitrate

55 Ammonium sulfate

56 Ammonium phosphate

57 Phosphorus trichloride

58 Phosphorus pentachloride

59 Phosphorus trioxide

60 Phosphorus pentoxide

61 Hydrogen phosphate (Phosphoric acid)

62 Hydrogen sulfate (Sulfuric acid)

63 Hydrogen nitrate (Nitric acid)

64 Hydrogen chloride (Hydrochloric acid)

65 Carbon tetrachloride

66 Silicon tetrachloride

67 Silicon dioxide

68 Sulfur dioxide

69 Sulfur trioxide

70 Hydrogen sulfide

71 Chlorine(I) oxide

72 Nitrogen dioxide

73 Nitrogen monoxide

74 Carbon dioxide

75 Carbon monoxide

76 Hydrogen hydroxide

Section 3: Naming of Compounds

At A-level you will meet many compounds that are new to you and a lot of these will be organic compounds. In this section you will look at the naming of compounds you may already have met at GCSE. Many of these compounds are named using simple rules. However, there are some that have 'trivial' names not fixed by the rules. It is important that you learn the names and formulae of these compounds. Later in the course you will learn the rules for naming most of the organic compounds you will meet.

Naming inorganic compounds

The name of an inorganic compound must show which elements are present and, where confusion is possible, the oxidation state (or charge) of the elements concerned.

1 You need to remember that if there are only two elements present then the name will end in ide

Oxides contain an element and oxygen eg

| $\mathrm{Na}_{2} \mathrm{O}$ | is sodium oxide |
| :--- | :--- | :--- |
| CaO | is calcium oxide |

Chlorides contain an element and chlorine eg

MgCl_{2}	is magnesium chloride
AlCl_{3}	is aluminium chloride

Bromides and lodides have an element and either bromine or iodine eg

KBr	is potassium bromide
ZnI	is zinc iodide

Hydrides contain an element and hydrogen and Nitrides an element and nitrogen eg

| LiH | is lithium hydride |
| :--- | :--- | :--- |
| $\mathrm{Mg}_{3} \mathrm{~N}_{2}$ | is magnesium nitride |

Other elements also form these types of compounds and the name always ends in -ide. The exceptions to this are hydroxides which have the - $\mathbf{O H}$ group, and cyanides which have the - $\mathbf{C N}$ group eg

NaOH	is	sodium hydroxide
$\mathrm{Ca}(\mathrm{OH})_{2}$	is	calcium hydroxide
KCN	is	potassium cyanide

2 If the elements concerned have more than one oxidation state (or charge) this may need to be shown. For example as iron can have charge +2 or +3 , the name iron chloride would not tell you which of the two possible compounds FeCl_{2} or FeCl_{3} is being considered. In this case the oxidation state (or charge) of the iron is indicated by the use of a roman II or III in brackets after the name of the metal. In this case iron(II) chloride for FeCl_{2} or iron(III) chloride for FeCl_{3}. Other examples are:

PbCl_{2}	is	lead(II) chloride
PbCl_{4}	is	lead(IV) chloride
$\mathrm{Fe}(\mathrm{OH})_{2}$	is	iron(II) hydroxide
$\mathrm{Mn}(\mathrm{OH})_{2}$	is	manganese(II) hydroxide

3 For compounds containing two non-metal atoms the actual number of atoms of the element present are stated, eg:
CO is carbon monoxide where mon- means one
CO_{2} is carbon dioxide where di- means two
SO_{2} is sulfur dioxide. This could be called sulfur(IV) oxide
$\mathrm{SO}_{3} \quad$ is sulfur trioxide. This could be called sulfur(VI) oxide
$\mathrm{PCl}_{3} \quad$ is phosphorus trichloride. This could be called phosphorus(III) chloride
$\mathrm{PCl}_{5} \quad$ is phosphorus pentachloride. This could be called phosphorus(V) chloride
$\mathrm{CCl}_{4} \quad$ is carbon tetrachloride
$\mathrm{SiCl}_{4} \quad$ is silicon tetrachloride

4 Where a compound contains a metal, a non-metal and oxygen it has a name ending in -ate or ite. You need to remember the names and formulae of the groups listed in the table Symbols and charges of common elements and ions. To cover the ideas we will look at the following groups:

Carbonate	$-\mathrm{CO}_{3}$
Sulfate	$-\mathrm{SO}_{4}$
Nitrate	$-\mathrm{NO}_{3}$

A compound of sodium, carbon and oxygen would be $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and would be called sodium carbonate. For example:

NaNO_{3}	is	sodium nitrate
$\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$	is \quad magnesium nitrate	
$\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$	is	iron(III) sulfate
FeSO_{4}	is	iron(II) sulfate

5 As most non-metals can have more than one oxidation state (or charge). For example sulfur can form sulfates and sulfites. The ending -ite is used when an element forms more than one such compound. In all cases the -ite is used for the compound with the lower number of oxygen atoms. Sulfate can also be referred to as sulfate(VI) and sulfite can also be referred to as sulfate(IV). In the case of nitrogen with oxygen the compounds would be nitrate and nitrite or nitrate(V) and nitrate(III).

Other elements can form compounds involving oxygen in this way. These include chlorate(V), chromate(VI), manganate(VII) and phosphate(V). For example:

KNO_{2}	is \quad potassium nitrite or potassium nitrate(III)	
$\mathrm{Na}_{2} \mathrm{SO}_{3}$	is	sodium sulfite or sodium sulfate(IV)
$\mathrm{K}_{2} \mathrm{CrO}_{4}$	is	potassium chromate(VI)
KMnO_{4}	is	potassium manganate(VII)
KClO_{3}	is	potassium chlorate(V)

In summary

Common name	Systematic name	Formulae
Sulfate	Sulfate(VI)	$-\mathrm{SO}_{4}$
Sulfite	Sulfate(IV)	$-\mathrm{SO}_{3}$
Nitrate	Nitrate(V)	$-\mathrm{NO}_{3}$
Nitrite	Nitrate(III)	$-\mathrm{NO}_{2}$
Chlorate	Chlorate(V)	$-\mathrm{ClO}_{3}$
Hypochlorite	Chlorate(I)	-ClO

Great care needs to be taken when using these systematic names, because the properties of the two groups of compounds will be very different. In some cases use of the wrong compound in a reaction can cause considerable danger. For this reason you should always read the label on a bottle or jar and make sure it corresponds exactly to what you should be using.

6 When a compound is being considered it is usual to write the metal down first, both in the name and the formula. The exceptions to this are in organic compounds where the name has the metal first but the formula has the metal at the end eg

$\mathrm{CH}_{3} \mathrm{COONa}$ is sodium ethanoate

7 The elements nitrogen and hydrogen can join together to form a group called the ammonium group. This must not be confused with the compound ammonia. The ammonium group has the formula $\mathbf{N H}_{4}+$ and sits in the place generally taken by a metal in a formula.

| $\mathrm{NH}_{4} \mathrm{Cl}$ | is \quad ammonium chloride |
| :--- | :--- | :--- |
| $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ | is \quad ammonium sulfate |
| $\mathrm{NH}_{4} \mathrm{ClO}_{3}$ | is ammonium chlorate(V) |

8 There are a small number of simple molecules that do not follow the above rules. You will need to learn their names and formulae. They include:

water	which is $\mathrm{H}_{2} \mathrm{O}$
sulfuric acid	which is $\mathrm{H}_{2} \mathrm{SO}_{4}$
nitric acid	which is HNO_{3}
hydrochloric acid	which is HCl
ammonia	which is NH_{3}
methane	which is CH_{4}

9 Organic compounds have their own set of naming and you will need to learn some of the basic rules. The names are generally based on the names of the simple hydrocarbons. These follow a simple pattern after the first four:

CH_{4}	is	methane
$\mathrm{C}_{2} \mathrm{H}_{6}$	is	ethane
$\mathrm{C}_{3} \mathrm{H}_{8}$	is	propane
$\mathrm{C}_{4} \mathrm{H}_{10}$	is	butane

After butane the names are based on the prefix for the number of carbons: C_{5}-pent, C_{6} - hex and so on.

Organic compounds with 2 carbons will either start with eth- or have -eth- in their name eg

$\mathrm{C}_{2} \mathrm{H}_{4}$	is	ethene
$\mathrm{C}_{2} \mathrm{H} 5 \mathrm{OH}$	is	ethanol
$\mathrm{CH}_{3} \mathrm{COOH}$	is	ethanoic acid
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$	is	chloroethane

Exercise 3: names from formulae

Use the notes in this section, the data in the table Symbols and charges of common elements and ions and the periodic table to write the names of the following formulae. Before you start this exercise make sure you have read Section 2: Chemical formulae.

```
1 H
```

$2 \quad \mathrm{CO}_{2}$
$3 \quad \mathrm{NH}_{3}$
$4 \quad \mathrm{O}_{2}$
$5 \quad \mathrm{H}_{2}$
$6 \quad \mathrm{SO}_{2}$
$7 \quad \mathrm{SO}_{3}$
$8 \quad \mathrm{HCl}$
$9 \quad \mathrm{CH}_{4}$

10	$\mathrm{H}_{2} \mathrm{~S}$
11	$\mathrm{H}_{2} \mathrm{SO}_{4}$
12	$\mathrm{HNO}_{3}(\mathrm{aq})$
13	NaCl
14	NaNO_{3}
15	$\mathrm{Na}_{2} \mathrm{CO}_{3}$
16	NaOH
17	$\mathrm{Na}_{2} \mathrm{SO}_{4}$
18	CaCl_{2}
19	$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
20	CaSO_{4}
21	BaCl_{2}
22	AlCl_{3}
23	$\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$
24	$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
25	FeSO_{4}
26	FeCl_{2}
27	FeCl_{3}

28	$\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
29	PbO
30	PbO_{2}
31	$\mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}$
32	AgNO_{3}
33	$\mathrm{NH}_{4} \mathrm{Cl}^{2}$
34	$\left.\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
35	$\mathrm{KCO}_{3}(\mathrm{~V}$ is Vanadium)
36	KHOO_{3}
43	$\mathrm{~K}_{2} \mathrm{~K}_{6}$

Section 4: The Mole

When chemists measure how much of a particular chemical reacts they measure the amount in grams or the volume of a gas. However, chemists find it convenient to use a unit called a mole. You need to know and be able to use several definitions of a mole.

- The mole is the amount of substance which contains the same number of particles (atoms, ions, molecules, formulae or electrons) as there are carbon atoms in 12 g of carbon -12.
- This number is known as the Avogadro constant, L, and is equal to $6.02 \times 10^{23} \mathrm{~mol}^{-1}$.
- The molar mass of a substance is the mass, in grams, of one mole.
- The molar volume of a gas is the volume occupied by one mole at room temperature and atmospheric pressure (r.t.p). It is equal to $24 \mathrm{dm}^{3}$ at r.t.p.
- Avogadro's Law states that equal volumes of all gases, under the same conditions of temperature and atmospheric pressure contain the same number of moles or molecules. If the volume is $24 \mathrm{dm}^{3}$, at room temperature and pressure, this number, is the Avogadro constant.

When you talk about moles, you must always state whether you are dealing with atoms, molecules, ions, formulae etc. To avoid any ambiguity it is best to show this as a formula.

Example calculations using moles

These calculations form the basis of many of the calculations you will meet in your A-level course.

Example 1

Calculation of the number of moles of material in a given mass of that material
a Calculate the number of moles of oxygen atoms in 64 g of oxygen atoms
You need the mass of one mole of oxygen atoms. This is the relative atomic mass in grams and in this case it is $16 \mathrm{~g} \mathrm{~mol}^{-1}$
number of moles of atoms $=\frac{\text { Mass in grams }}{\text { molar mass of atoms }}$

64 g of oxygen atoms
\therefore numberofmolesofoxygen $=$
molarmassofoxygenof $16 \mathrm{gmol}^{-1}$
$=4$ moles of oxygen atoms
b Calculate the number of moles of chlorine molecules in 142 g of chlorine gas
number of moles of atoms $=\frac{\text { Mass in grams }}{\text { molar mass of atoms }}$

The first stage of this calculation is to calculate the molar mass of chlorine molecules. Molar mass of $\mathrm{Cl}_{2}=2 \times 35.5=71 \mathrm{~g} \mathrm{~mol}^{-1}$
\therefore number of moles of chlorine $=$

142gofchlorinegas

$$
\begin{aligned}
& \text { molarmassofchlorineof71 }_{\mathrm{gmol}^{-1}} \\
= & \mathbf{2} \text { moles of chlorine molecules }
\end{aligned}
$$

c Calculate the number of moles of $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$ in 100 g of the solid
The relative molecular mass of $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}=$
$[63.5+32.1+(4 \times 16)+5\{(2 \times 1)+16\}]=249.6 \mathrm{~g} \mathrm{~mol}^{-1}$

100 gofCuSO $4.5 \mathrm{H}_{2} \mathrm{O}$
\therefore numberofmolesofCuSO $4.5 \mathrm{H}_{2} \mathrm{O}=$

$$
\begin{aligned}
& \text { molecularmassofCuSO } 4.5 \mathrm{H}_{2} \mathrm{Oof} 249.5 \mathrm{gmol}^{-1} \\
= & 0.4006 \text { moles of } \mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O} \text { molecules }
\end{aligned}
$$

Example 2

Calculation of the mass of material in a given number of moles of that material

The mass of a given
number of moles
:---:
mole
:---:
material concerned

a Calculate the mass of 3 moles of sulfur dioxide SO_{2}
1 mole of sulfur dioxide has a mass $=32.1+(2 \times 16)=64.1 \mathrm{~g} \mathrm{~mol}^{-1}$
$\therefore 3$ moles of $\mathrm{SO}_{2}=3 \times 64.1=192.3 \mathrm{~g}$
b What is the mass of 0.05 moles of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} .5 \mathrm{H}_{2} \mathrm{O}$?
1 mole of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} .5 \mathrm{H}_{2} \mathrm{O}=[(23 \times 2)+(32.1 \times 2)+(16 \times 3)]+5[(2 \times 1)+16]=248.2 \mathrm{~g} \mathrm{~mol}^{-1}$
$\therefore 0.05$ moles of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} .5 \mathrm{H}_{2} \mathrm{O}=0.05 \times 248.2=\mathbf{1 2 . 4 1} \mathrm{g}$

Example 3

Calculation of the volume of a given number of moles of a gas

You will be given the information that 1 mole of any gas has a volume of $\mathbf{2 4} \mathrm{dm}^{\mathbf{3}}\left(\mathbf{2 4 , 0 0 0} \mathrm{cm}^{3}\right)$ at room temperature and pressure.

```
\therefore the volume of a given number of = number of moles x moles of gas 
```

a What is the volume of 2 mol of carbon dioxide?
Remember you do not need to work out the molar mass to do this calculation as it does not matter what gas it is.
$\therefore 2$ moles of carbon dioxide $=2 \times 24000 \mathrm{~cm}^{3}=48000 \mathrm{~cm}^{3}=48 \mathrm{dm}^{3}$
b What is the volume of 0.0056 moles of chlorine molecules?
Volume of 0.0056 moles of chlorine $=0.0056 \times 24000 \mathrm{~cm}^{3}=134.4 \mathrm{~cm}^{3}$

Example 4

Calculation of the number of moles of gas in a given volume of that gas

number of moles of gas $=\frac{\text { volumeofgasincm }^{3}}{24000 \mathrm{~cm}^{3}}$
a Calculate the number of moles of hydrogen molecules in $240 \mathrm{~cm}^{3}$ of the gas.

$$
240 \mathrm{~cm}^{3}
$$

Number of moles $=$ \qquad $=0.010 \mathrm{moles}$

$$
24000 \mathrm{~cm}^{3}
$$

b How many moles of a gas are there in $1000 \mathrm{~cm}^{3}$ of the gas?

$$
1000 \mathrm{~cm}^{3}
$$

Number of moles of gas $=\overline{24000 \mathrm{~cm}^{3}}$

Example 5

Calculation of the volume of a given mass of gas

For this calculation you need to apply the skills covered in the previous examples.
Calculate the volume of 10 g of hydrogen gas
This is a two-stage calculation:
a) you need to calculate how many moles of hydrogen gas are present and
b) you need to convert this to a volume

$$
\text { 10gofhydrogen }\left(\mathrm{H}_{2}\right)
$$

\therefore number of moles of hydrogen $\left(\mathrm{H}_{2}\right)=$

$$
\begin{aligned}
& \text { Molecular mass of hydrogen }\left(\mathrm{H}_{2}\right) \text { of } 2 \mathrm{gmol}^{-1} \\
= & 5 \text { moles }
\end{aligned}
$$

$\therefore 5$ moles of hydrogen $=5 \times 24000 \mathrm{~cm}^{3}=120000 \mathrm{~cm}^{3}=120 \mathrm{dm}^{3}$

Example 6

Calculation of the mass of a given volume of gas

For this calculation you need to apply the skills covered in the previous examples.
Calculate the mass of $1000 \mathrm{~cm}^{3}$ of carbon dioxide
Again this is a two-stage calculation
a) you need to calculate the number of moles of carbon dioxide and then
b) convert this to a mass
$1000 \mathrm{~cm}^{3}$ ofCO C_{2} volumeof1 moleofCO
of $24000 \mathrm{~cm}^{3}$
\therefore numberofmolesofCO ${ }_{2}=$

$$
=0.0147 \text { moles }
$$

$\therefore 0.0147$ moles of carbon dioxide $=0.0147 \mathrm{x} 44 \mathrm{~g}=1.833 \mathrm{~g}$

Example 7

Calculation of the molar mass of a gas from mass and volume data for the gas

For calculations of this type you need to find the mass of 1 mole of the gas ie $24000 \mathrm{~cm}^{3}$. This is the molar mass of the gas. For example, calculate the relative molecular mass of a gas for which $100 \mathrm{~cm}^{3}$ of the gas at room temperature and pressure have a mass of 0.0667 g .
$100 \mathrm{~cm}^{3}$ of the gas has a mass of 0.0667 g .
$\therefore 24000 \mathrm{~cm}^{3}$ of the gas must have a mass of $=$

$$
\begin{gathered}
0.0667 \mathrm{~g} \times 24000 \mathrm{~cm}^{3} \\
\hline 100 \mathrm{~cm}^{3} \\
=16 \mathrm{~g}
\end{gathered}
$$

\therefore the molar mass of the gas is $16 \mathbf{g ~ m o l}^{-1}$

Exercise 4a: calculation of the number of moles of material in a given mass of that material

In this set of calculations all the examples chosen are from the list of compounds whose molar mass you calculated in Exercise 1.

In each case calculate the number of moles of the material in the mass stated.
$1 \quad 9.00 \mathrm{~g}$ of $\mathrm{H}_{2} \mathrm{O}$
$2 \quad 88.0 \mathrm{~g}_{\mathrm{of} \mathrm{CO}}^{2}$
$3 \quad 1.70 \mathrm{~g}$ of NH_{3}
$4 \quad 230 \mathrm{~g}$ of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
$5 \quad 560 \mathrm{~g}$ of $\mathrm{C}_{2} \mathrm{H}_{4}$
$6 \quad 0.641 \mathrm{~g}$ of SO_{2}
$7 \quad 80.1 \mathrm{~g}$ of SO_{3}
$8 \quad 18.20 \mathrm{~g}$ of HBr
$9 \quad 0.0981 \mathrm{~g}$ of $\mathrm{H}_{2} \mathrm{SO}_{4}$
$10 \quad 3.15 \mathrm{~g}$ of HNO_{3}
$11 \quad 19.3 \mathrm{~g}$ of NaCl
$12 \quad 21.25 \mathrm{~g}$ of NaNO_{3}
$13 \quad 2.25 \mathrm{~g}$ of $\mathrm{Na}_{2} \mathrm{CO}_{3}$
$14 \quad 0.800 \mathrm{~g}$ of NaOH
$15 \quad 17.77 \mathrm{~g}$ of $\mathrm{Na}_{2} \mathrm{SO}_{4}$
$16 \quad 3.16 \mathrm{~g}^{\circ}$ of KMnO4
$18 \quad 100.1 \mathrm{~g}$ of KHCO_{3}
$19 \quad 7.63 \mathrm{~g}$ of KI
$20 \quad 3.90 \mathrm{~g}$ of CsNO_{3}
$21 \quad 0.1111 \mathrm{~g}$ of CaCl_{2}
2241.025 g of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
$23 \quad 1.482 \mathrm{~g}$ of $\mathrm{Ca}(\mathrm{OH})_{2}$
$24 \quad 3.405 \mathrm{mg}$ of CaSO_{4}
$25 \quad 41.66 \mathrm{~kg}$ of BaCl_{2}
$26 \quad 14.96 \mu \mathrm{~g}$ of CuSO_{4}
$27 \quad 13.64 \mathrm{~g}$ of ZnCl_{2}
$28 \quad 1.434 \mathrm{mg}$ of AgNO_{3}
$29 \quad 13.76 \mathrm{~kg}$ of $\mathrm{NH}_{4} \mathrm{Cl}$
$30 \quad 13.77 \mathrm{~g}$ of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
$31 \quad 23.4 \mathrm{~g}$ of $\mathrm{NH}_{4} \mathrm{VO}_{3}$

Exercise 4b: calculation of the mass of material in a given number of moles of that material

In each case calculate the mass in grams of the material in the number of moles stated

$\mathbf{1}$	2 moles of $\mathrm{H}_{2} \mathrm{O}$
$\mathbf{2}$	3 moles of CO_{2}
$\mathbf{3}$	2.8 moles of NH_{3}
$\mathbf{4}$	0.50 moles of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
$\mathbf{5}$	1.2 moles of $\mathrm{C}_{2} \mathrm{H}_{4}$
$\mathbf{6}$	0.64 moles of SO_{2}
$\mathbf{7}$	3 moles of SO_{3}
$\mathbf{8}$	1 mole of HBr^{2}
$\mathbf{9}$	0.012 moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$
$\mathbf{1 0}$	0.15 moles of HNO_{3}
$\mathbf{1 3}$	0.45 moles of NaCl^{2}
$\mathbf{1 3}$	0.90 moles of $\mathrm{Na}_{2} \mathrm{SO}_{4}$

Exercise 4c: Calculation of the volume of a given number of moles of a gas

In each case calculate the volume of the number of moles of gas stated.
(Assume that all volumes are measured at room temperature and pressure and that 1 mole of gas has a volume of $24000 \mathrm{~cm}^{3}$ under these conditions.)
$1 \quad 1$ mole of CO_{2}
$2 \quad 0.1$ moles of NH_{3}
$3 \quad 0.5$ moles of $\mathrm{C}_{2} \mathrm{H}_{4}$
$4 \quad 2$ moles of SO_{2}
$5 \quad 0.12$ moles of SO_{3}
$6 \quad 3.4$ moles of HBr
$7 \quad 0.11$ moles of Cl_{2}
$8 \quad 0.0040$ moles of CH_{4}
$9 \quad 10$ moles of H_{2}
$10 \quad 0.45$ moles of O_{2}
110.0056 moles of $\mathrm{C}_{2} \mathrm{H}_{6}$
120.0090 moles of $\mathrm{C}_{3} \mathrm{H}_{8}$
$13 \quad 0.040$ moles of $\mathrm{C}_{2} \mathrm{H}_{2}$
$14 \quad 0.123$ moles of NO

Exercise 4d: calculation of the number of moles of gas in a given volume of that gas

In each case calculate the volume of the number of moles of gas stated.
(Assume that all volumes are measured at room temperature and pressure and that 1 mol of gas has a volume of $24000 \mathrm{~cm}^{3}$ under these conditions.)

1	$200 \mathrm{~cm}^{3}$ of CO_{2}
2	$500 \mathrm{~cm}^{3}$ of NH_{3}
3	$1000 \mathrm{~cm}^{3}$ of $\mathrm{C}_{2} \mathrm{H}_{4}$
4	$2000 \mathrm{~cm}^{3}$ of SO_{2}
5	$234 \mathrm{~cm}^{3}$ of SO_{3}
6	$226 \mathrm{~cm}^{3}$ of HBr^{2}
7	$256 \mathrm{~cm}^{3}$ of Cl_{2}
8	$200 \mathrm{~cm}^{3}$ of CH_{4}
9	$2000 \mathrm{~cm}^{3}$ of H_{2}
10	$2400 \mathrm{~cm}^{3}$ of O_{2}

Exercise 4e: calculation of the volume of a given mass of gas

In each case calculate the volume in cm^{3} of the mass of gas given.
(Assume that all volumes are measured at room temperature and pressure and that 1 mol of gas has a volume of $24000 \mathrm{~cm}^{3}$ under these conditions.)
$1 \quad 2 \mathrm{~g} \mathrm{of} \mathrm{CO}_{2}$
$2 \quad 5 \mathrm{~g}$ of NH_{3}
$3 \quad 10 \mathrm{~g} \mathrm{of} \mathrm{C}_{2} \mathrm{H}_{4}$
$4 \quad 20 \mathrm{~g}$ of SO_{2}
$5 \quad 2.34 \mathrm{~g} \mathrm{of} \mathrm{SO}_{3}$
$6 \quad 2.26 \mathrm{~g}$ of HBr
$7 \quad 10 \mathrm{~g} \mathrm{of} \mathrm{Cl}_{2}$
$8 \quad 20 \mathrm{~g}$ of CH4
$9 \quad 200 \mathrm{~g}$ of H_{2}
$10 \quad 240{\mathrm{~g} \text { of } \mathrm{O}_{2}}^{2}$
$11 \quad 70 \mathrm{~g}$ of $\mathrm{C}_{2} \mathrm{H}_{6}$
$12 \quad 56 \mathrm{~g} \mathrm{of} \mathrm{C}_{3} \mathrm{H}_{8}$

Exercise 4f: Calculation of the mass of a given volume of gas

Calculate the mass of the volume of gases stated below.
(Assume that all volumes are measured at room temperature and pressure and that 1 mol of gas has a volume of $24000 \mathrm{~cm}^{3}$ under these conditions.)

1	$200 \mathrm{~cm}^{3}$ of CO_{2}
2	$500 \mathrm{~cm}^{3}$ of NH_{3}
3	$1000 \mathrm{~cm}^{3}$ of $\mathrm{C}_{2} \mathrm{H}_{4}$
4	$2000 \mathrm{~cm}^{3}$ of SO_{2}
5	$234 \mathrm{~cm}^{3}$ of SO_{3}
6	$226 \mathrm{~cm}^{3}$ of HBr
7	$256 \mathrm{~cm}^{3}$ of Cl_{2}
8	$200 \mathrm{~cm}^{3}$ of CH_{4}
9	$2000 \mathrm{~cm}^{3}$ of H_{2}
10	$2400 \mathrm{~cm}^{3}$ of O_{2}
11	$700 \mathrm{~cm}^{3}$ of $\mathrm{C}_{2} \mathrm{H}_{6}$
12	$5600 \mathrm{~cm}^{3}$ of $\mathrm{C}_{3} \mathrm{H}_{8}$
13	$2200 \mathrm{~cm}^{3}$ of $\mathrm{C}_{2} \mathrm{H}_{2}$

Exercise 4g: calculation of the relative molecular mass of a gas from mass and volume data for the gas

In each case you are given the mass of a certain volume of an unknown gas. From each set of data calculate the relative molecular mass of the gas.
(Assume that all volumes are measured at room temperature and pressure and that 1 mol of gas has a volume of $24000 \mathrm{~cm}^{3}$ under these conditions.)
$1 \quad 0.373 \mathrm{~g}$ of gas occupy $56 \mathrm{~cm}^{3}$
$2 \quad 0.747 \mathrm{~g}$ of gas occupy $280 \mathrm{~cm}^{3}$
$3 \quad 0.467 \mathrm{~g}$ of gas occupy $140 \mathrm{~cm}^{3}$
$4 \quad 0.296 \mathrm{~g}$ of gas occupy $100 \mathrm{~cm}^{3}$
$5 \quad 0.0833 \mathrm{~g}$ of gas occupy $1000 \mathrm{~cm}^{3}$
$6 \quad 0.175 \mathrm{~g}$ of gas occupy $150 \mathrm{~cm}^{3}$
$7 \quad 0.375 \mathrm{~g}$ of gas occupy $300 \mathrm{~cm}^{3}$
$8 \quad 0.218 \mathrm{~g}$ of gas occupy $90 \mathrm{~cm}^{3}$
$9 \quad 0.267 \mathrm{~g}$ of gas occupy $200 \mathrm{~cm}^{3}$
$10 \quad 1.63 \mathrm{~g}$ of gas occupy $1400 \mathrm{~cm}^{3}$

Section 5: calculations involving chemicals in solution

Experiments measuring concentrations of chemicals in solution are often referred to as volumetric analysis. The name should not worry you, the basis of the calculations is the same as all the rest, ie moles and equations.

Many reactions take place in solutions of known concentration.
Concentration in solution is generally measured as moles per $1000 \mathrm{~cm}^{3}$ of solution. For example, sodium chloride may be labelled as 1 M NaCl . This means that each $1000 \mathrm{~cm}^{3}$ of the solution contains 1 mole of $\mathrm{NaCl}(58.5 \mathrm{~g})$, or its concentration is $1 \mathrm{~mol} \mathrm{dm}^{-3}$.
It does not mean that 58.5 g of NaCl have been added to $1000 \mathrm{~cm}^{3}$ of water as the volume of the mixture may no longer be $1000 \mathrm{~cm}^{3}$.

The solution will have been made up by measuring out 58.5 g of the solid, dissolving it in about $500 \mathrm{~cm}^{3}$ of water and then adding more water to make the total volume of the mixture up to 1000 cm^{3}. ($1 \mathrm{dm}^{3}$)
Concentration in $\mathrm{mol} \mathrm{dm}^{-3}$ is called molarity.

$$
\text { molarity }=\frac{\text { concentrationingramsper1000 } \mathrm{cm}^{3}}{\mathrm{M}_{\mathrm{r}} \text { for the material dissolved }}
$$

number of moles of material in a given volume $=\frac{\text { molarity } \times \text { volume }\left(\mathrm{cm}^{3}\right)}{1000}$
mass of material in a given volume of solution $=\frac{\text { molarity } \times \text { volume }\left(\mathrm{cm}^{3}\right) \times M_{r}}{1000}$

In reactions in solution it is often more convenient to use molarity (number of $\mathrm{mol} \mathrm{dm}^{-3}$) rather than $\mathrm{g} \mathrm{dm}^{-3}$.

Exercise 5a: calculations based on concentrations in solution

Calculate the number of moles of the underlined species in the given volume of solution
$125 \mathrm{~cm}^{3}$ of $1.0 \mathrm{~mol} \mathrm{dm}^{-3} \underline{\mathrm{HCl}}$
$250 \mathrm{~cm}^{3}$ of $0.5 \mathrm{~mol} \mathrm{dm}^{-3} \underline{\mathrm{HCl}}$
$3 \quad 250 \mathrm{~cm}^{3}$ of $0.25 \mathrm{~mol} \mathrm{dm}^{-3} \underline{\mathrm{HCl}}$
$4 \quad 500 \mathrm{~cm}^{3}$ of $0.01 \mathrm{~mol} \mathrm{dm}^{-3} \underline{\mathrm{HCl}}$
$5 \quad 25 \mathrm{~cm}^{3}$ of $1.0 \mathrm{~mol} \mathrm{dm}^{-3} \underline{\mathrm{NaOH}}$
$6 \quad 50 \mathrm{~cm}^{3}$ of $0.5 \mathrm{~mol} \mathrm{dm}^{-3} \underline{\mathrm{KOH}}$
$7 \quad 50 \mathrm{~cm}^{3}$ of $0.25 \mathrm{~mol} \mathrm{dm}^{-3}{\underline{\mathrm{HNO}_{3}}}^{3}$
$8 \quad 100 \mathrm{~cm}^{3}$ of $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \underline{\mathrm{H}}_{2} \underline{\mathrm{SO}}_{4}$
$9 \quad 25 \mathrm{~cm}^{3}$ of $0.05 \mathrm{~mol} \mathrm{dm}^{-3} \underline{\mathrm{KMnO}_{4}}$
$10 \quad 25 \mathrm{~cm}^{3}$ of $0.2 \mathrm{~mol} \mathrm{dm}^{-3} \underline{\mathrm{FeSO}_{4}}$

Exercise 5b: calculate the mass of material in the given volume of solution

$125 \mathrm{~cm}^{3}$ of $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$
$250 \mathrm{~cm}^{3}$ of $0.5 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaCl}$
$3 \quad 100 \mathrm{~cm}^{3}$ of $0.25 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NH}_{4} \mathrm{NO}_{3}$
$4 \quad 100 \mathrm{~cm}^{3}$ of $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{AgNO}_{3}$
$5 \quad 25 \mathrm{~cm}^{3}$ of $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{BaCl}_{2}$
$6 \quad 50 \mathrm{~cm}^{3}$ of $0.2 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{H}_{2} \mathrm{SO}_{4}$
$7 \quad 20 \mathrm{~cm}^{3}$ of $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$
$8 \quad 50 \mathrm{~cm}^{3}$ of $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~K}_{2} \mathrm{CrO}_{4}$
$9 \quad 25 \mathrm{~cm}^{3}$ of $0.02 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{KMnO}_{4}$
$10 \quad 25 \mathrm{~cm}^{3}$ of $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}$

Exercise 5c: what is the concentration in moles dm^{-3} of the following?

$1 \quad 3.65 \mathrm{~g}$ of HCl in $1000 \mathrm{~cm}^{3}$ of solution
$2 \quad 3.65 \mathrm{~g}$ of HCl in $100 \mathrm{~cm}^{3}$ of solution
$3 \quad 6.624 \mathrm{~g}$ of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ in $250 \mathrm{~cm}^{3}$ of solution
$4 \quad 1.00 \mathrm{~g}$ of NaOH in $250 \mathrm{~cm}^{3}$ of solution
$5 \quad 1.962 \mathrm{~g}$ of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in $250 \mathrm{~cm}^{3}$ of solution
$6 \quad 1.58 \mathrm{~g}$ of KMnO_{4} in $250 \mathrm{~cm}^{3}$ of solution
$7 \quad 25.0 \mathrm{~g}$ of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} .5 \mathrm{H}_{2} \mathrm{O}$ in $250 \mathrm{~cm}^{3}$ of solution
$8 \quad 25.0 \mathrm{~g}$ of CuSO $4.5 \mathrm{H}_{2} \mathrm{O}$ in $250 \mathrm{~cm}^{3}$ of solution
$9 \quad 4.80 \mathrm{~g}$ of $(\mathrm{COOH})_{2} .2 \mathrm{H}_{2} \mathrm{O}$ in $250 \mathrm{~cm}^{3}$ of solution
$10 \quad 10.0 \mathrm{~g}$ of FeSO_{4}. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} .6 \mathrm{H}_{2} \mathrm{O}$ in $250 \mathrm{~cm}^{3}$ of solution
$11240 \mathrm{~cm}^{3}$ of $\mathrm{NH}_{3}(\mathrm{~g})$ dissolved in $1000 \mathrm{~cm}^{3}$ of solution
$12480 \mathrm{~cm}^{3}$ of $\mathrm{HCl}(\mathrm{g})$ dissolved in $100 \mathrm{~cm}^{3}$ of solution

Section 6: Chemical Equations

Chemical equations do much more than tell us what reacts with what in a chemical reaction. They tell us how many of each type of molecule are needed and produced, so they also tell us what masses of the reactants are needed to produce a given mass of products.

Often you will learn equations that have been given to you. However, if you are to interpret equations correctly you must learn to write them for yourself.

Equations in words

Before you can begin to write an equation, you must know what the reacting chemicals are and what is produced in the reaction. You can then write them down as a word equation. For instance, hydrogen reacts with oxygen to give water, or as a word equation:

$$
\text { hydrogen }+ \text { oxygen } \rightarrow \quad \text { water }
$$

Writing formulae

When you have written the equation in words you can then write the formula for each of the substances involved. You may know them or have to look them up. In the above example:

- hydrogen is represented as H_{2}
- oxygen is represented as O_{2}
- water is $\mathrm{H}_{2} \mathrm{O}$

So we get:
$\mathrm{H}_{2}+\mathrm{O}_{2} \quad \rightarrow \quad \mathrm{H}_{2} \mathrm{O}$
However, this will not suffice as a full equation as you will discover if you read on!

Balancing the equation

One of the most important things you must understand in chemistry is that atoms are rearranged in chemical reactions. They are never produced from 'nowhere' and they do not simply 'disappear'. This means that in a chemical equation you must have the same number of each kind of atoms on the left-hand side of the equation as on the right. Sometimes you need to start with two or more molecules of one of the reactants and you may end up with more than one molecule of one of the products.

Let us look at two very simple examples:

carbon	+ oxygen	\rightarrow	carbon dioxide
C	$+\mathrm{O}_{2}$	\rightarrow	CO_{2}

Carbon dioxide has one atom of carbon and two atoms of oxygen in one molecule. Carbon is written as C (one atom) and oxygen molecules have two atoms each, written as O_{2}.

This equation does not need balancing because the number of atoms of carbon is the same on the left as on the right (1) and the number of atoms oxygen is also the same (2) - therefore it is already balanced.

Now let us try one that does not work out.

$$
\text { magnesium }+ \text { oxygen } \quad \rightarrow \quad \text { magnesium oxide }
$$

Magnesium is written as Mg (one atom just like carbon) and oxygen is O_{2}, but magnesium oxide has just one atom of oxygen per molecule and is therefore written as MgO .
$\mathrm{Mg} \quad+\mathrm{O}_{2} \quad \rightarrow \quad \mathrm{MgO}$

The magnesium balances, one atom on the left and one on the right, but the oxygen does not as there are two atoms on the left-hand side of the equation and only one on the right-hand side. You cannot change the formulae of the reactants or products.

Each 'formula' of magnesium oxide has only one atom of oxygen but each molecule of oxygen has two atoms of oxygen, so you can make two formulae of magnesium oxide for each molecule of oxygen. So we get:

$$
\mathrm{Mg} \quad+\quad \mathrm{O}_{2} \quad \rightarrow \quad 2 \mathrm{MgO}
$$

Even now the equation does not balance because we need two atoms of magnesium to make two formulae of MgO , and the final equation is:
$2 \mathrm{Mg} \quad+\quad \mathrm{O}_{2} \quad \rightarrow \quad 2 \mathrm{MgO}$

Sometimes you will need to show in the equation whether the chemicals are solid, liquid or gas. You do this by adding in state symbols: (aq) for aqueous solution, (g) for gas, (I) for liquid and (s) for solid or precipitate:

$$
2 \mathrm{Mg}(\mathrm{~s}) \quad+\quad \mathrm{O}_{2}(\mathrm{~g}) \quad \rightarrow \quad 2 \mathrm{MgO}(\mathrm{~s})
$$

Exercise 6a: Balancing equations

Balance the following equations. To get you started _ indicates in the first six questions where numbers need to be inserted to achieve the balance. In one or two difficult cases some of the numbers have been added. You will not need to change these. Remember all the formulae are correct!

1	_ H_{2}	+	O_{2}	\rightarrow	${ }_{-} \mathrm{H}_{2} \mathrm{O}$				
2	BaCl_{2}	+	_ NaOH	\rightarrow	$\mathrm{Ba}(\mathrm{OH})_{2}$	+	_ NaCl		
3	$\mathrm{H}_{2} \mathrm{SO}_{4}$	+	_ KOH	\rightarrow	${ }_{-} \mathrm{K}_{2} \mathrm{SO}_{4}$	+	$\mathrm{H}_{2} \mathrm{O}$		
4	$\mathrm{K}_{2} \mathrm{CO}_{3}$	+	_ HCl	\rightarrow	_KCl	+	$\mathrm{H}_{2} \mathrm{O}$	+	CO 2
5	CaCO_{3}	+	_ HNO_{3}	\rightarrow	$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$	+	$\mathrm{H}_{2} \mathrm{O}$	+	CO 2
6	Ca	+	${ }_{-} \mathrm{H}_{2} \mathrm{O}$	\rightarrow	$\mathrm{Ca}(\mathrm{OH})_{2}$	+	H_{2}		
7	$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$	+	NaI	\rightarrow	Pbl_{2}	+	NaNO_{3}		
8	$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$	+	NaOH	\rightarrow	$\mathrm{Al}(\mathrm{OH})_{3}$	+	$\mathrm{Na}_{2} \mathrm{SO}_{4}$		
9	$4 \mathrm{HNO}_{3}$	+	Cu	\rightarrow	$\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$	+	NO_{2}	+	$\mathrm{H}_{2} \mathrm{O}$
10	$\mathrm{H}_{3} \mathrm{PO}_{4}$	+	NaOH	\rightarrow	$\mathrm{NaH}_{2} \mathrm{PO}_{4}$	+	$\mathrm{H}_{2} \mathrm{O}$		
11	$\mathrm{H}_{3} \mathrm{PO}_{4}$	+	NaOH	\rightarrow	$\mathrm{Na}_{3} \mathrm{PO}_{4}$	+	$\mathrm{H}_{2} \mathrm{O}$		
12	$\mathrm{H}_{3} \mathrm{PO}_{4}$	+	NaOH	\rightarrow	$\mathrm{Na}_{2} \mathrm{HPO}_{4}$	+	$\mathrm{H}_{2} \mathrm{O}$		

